TY - JOUR
T1 - Retinoic acid-Induced transglutaminase 2 expression reduces sensitivity to cisplatin in the hormone-positive MCF-7 breast cancer cell model
AU - Lawani-Luwaji, Ebidor U.
AU - Pike, Claire V. S.
AU - Coussons, Peter J.
N1 - Data Availability Statement: The original contributions presented in this study are included in the article/Supplementary Materials. Further inquiries, including the raw data supporting the conclusions of this article, can be made to the corresponding author.
PY - 2025/8/21
Y1 - 2025/8/21
N2 - Cisplatin is an effective chemotherapeutic drug, but is limited both by its toxicity and its tendency to induce drug resistance rapidly in some patients. Tissue transglutaminase 2 (TG2), which is overexpressed in various cancers, has two main isoforms: a long (TG2-L) and a short form (TG2-S). While TG2-L supports cell survival, conversely, TG2-S promotes cell death. Evidence increasingly suggests that TG2 may be a suitable target for combating chemoresistance in a variety of human cancers. Here, we show that cisplatin toxicity towards wild-type MCF-7 breast cancer cells is associated with reduced TG2-L and TG2-S expression, whereas approximately doubling the TG2-L expression through the retinoic acid pre-treatment of these cells induces survival in the presence of cisplatin at levels similar to those seen in long-term cisplatin-co-cultured cells, which have reduced sensitivity. The treatment of cisplatin-surviving cells with cisplatin alone did not significantly alter the levels of either TG2 isoform, whereas the cisplatin challenge of cisplatin-surviving MCF-7 cells following 20 µM retinoic acid pre-treatment resulted in increased levels of TG2-L, increased TG2 enzyme activity, and no significant change in TG2-S levels, with increased cell survival. These findings suggest a subtype-specific regulatory effect of RA in cisplatin-surviving MCF-7 cells, with TG2-L upregulated at higher RA concentrations, potentially contributing to altered cisplatin sensitivity. Anti-TG2 siRNA silencing reduced cisplatin IC50 to base levels in both wild-type and cisplatin-surviving MCF-7 cells, supporting the notion that the modulation of TG2 expression could offer a significant benefit to cisplatin efficacy. Preventing excessive retinoic acid exposure may also be a mechanism for maximising cisplatin efficacy, considering TG2 modulation.
AB - Cisplatin is an effective chemotherapeutic drug, but is limited both by its toxicity and its tendency to induce drug resistance rapidly in some patients. Tissue transglutaminase 2 (TG2), which is overexpressed in various cancers, has two main isoforms: a long (TG2-L) and a short form (TG2-S). While TG2-L supports cell survival, conversely, TG2-S promotes cell death. Evidence increasingly suggests that TG2 may be a suitable target for combating chemoresistance in a variety of human cancers. Here, we show that cisplatin toxicity towards wild-type MCF-7 breast cancer cells is associated with reduced TG2-L and TG2-S expression, whereas approximately doubling the TG2-L expression through the retinoic acid pre-treatment of these cells induces survival in the presence of cisplatin at levels similar to those seen in long-term cisplatin-co-cultured cells, which have reduced sensitivity. The treatment of cisplatin-surviving cells with cisplatin alone did not significantly alter the levels of either TG2 isoform, whereas the cisplatin challenge of cisplatin-surviving MCF-7 cells following 20 µM retinoic acid pre-treatment resulted in increased levels of TG2-L, increased TG2 enzyme activity, and no significant change in TG2-S levels, with increased cell survival. These findings suggest a subtype-specific regulatory effect of RA in cisplatin-surviving MCF-7 cells, with TG2-L upregulated at higher RA concentrations, potentially contributing to altered cisplatin sensitivity. Anti-TG2 siRNA silencing reduced cisplatin IC50 to base levels in both wild-type and cisplatin-surviving MCF-7 cells, supporting the notion that the modulation of TG2 expression could offer a significant benefit to cisplatin efficacy. Preventing excessive retinoic acid exposure may also be a mechanism for maximising cisplatin efficacy, considering TG2 modulation.
KW - breast cancer
KW - cisplatin
KW - dietary retinoids
KW - MCF-7
KW - transglutaminase 2
UR - http://www.scopus.com/inward/record.url?scp=105014281558&partnerID=8YFLogxK
U2 - 10.3390/ijms26168101
DO - 10.3390/ijms26168101
M3 - Article
C2 - 40869421
AN - SCOPUS:105014281558
SN - 1661-6596
VL - 26
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 16
M1 - 8101
ER -