Schizotypy-related magnetization of cortex in healthy adolescence is colocated with expression of schizophrenia-related genes

Rafael Romero-Garcia, Jakob Seidlitz, Kirstie J. Whitaker, Sarah E. Morgan, Peter B. Jones, Ian M. Goodyer, John Suckling, NSPN Consortium, Petra E. Vértes, Edward T. Bullmore

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)
6 Downloads (Pure)


Background: Genetic risk is thought to drive clinical variation on a spectrum of schizophrenia-like traits, but the underlying changes in brain structure that mechanistically link genomic variation to schizotypal experience and behavior are unclear.

Methods: We assessed schizotypy using a self-reported questionnaire and measured magnetization transfer as a putative microstructural magnetic resonance imaging marker of intracortical myelination in 68 brain regions in 248 healthy young people (14–25 years of age). We used normative adult brain gene expression data and partial least squares analysis to find the weighted gene expression pattern that was most colocated with the cortical map of schizotypy-related magnetization.

Results: Magnetization was significantly correlated with schizotypy in the bilateral posterior cingulate cortex and precuneus (and for disorganized schizotypy, also in medial prefrontal cortex; all false discovery rate–corrected ps < .05), which are regions of the default mode network specialized for social and memory functions. The genes most positively weighted on the whole-genome expression map colocated with schizotypy-related magnetization were enriched for genes that were significantly downregulated in two prior case-control histological studies of brain gene expression in schizophrenia. Conversely, the most negatively weighted genes were enriched for genes that were transcriptionally upregulated in schizophrenia. Positively weighted (downregulated) genes were enriched for neuronal, specifically interneuronal, affiliations and coded a network of proteins comprising a few highly interactive “hubs” such as parvalbumin and calmodulin.

Conclusions: Microstructural magnetic resonance imaging maps of intracortical magnetization can be linked to both the behavioral traits of schizotypy and prior histological data on dysregulated gene expression in schizophrenia.
Original languageEnglish
Pages (from-to)248-259
Number of pages12
JournalBiological Psychiatry
Issue number3
Early online date13 Dec 2019
Publication statusPublished - 1 Aug 2020


  • Adolescence
  • Allen Human Brain Atlas
  • Development
  • Fast-spiking GABAergic interneurons
  • Multiparameter MRI mapping
  • Myelination
  • Schizophrenia

Cite this