Seasonal evolution of stratosphere-troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate

Eun-Pa Lim, Harry H. Hendon, David W. J. Thompson

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)
4 Downloads (Pure)

Abstract

Stratosphere-troposphere coupling in the Southern Hemisphere (SH) polar vortex is an important dynamical process that provides predictability of the tropospheric Southern Annular Mode (SAM) and its associated surface impacts. SH stratosphere-troposphere coupling is explored by height-time domain empirical orthogonal function (EOF) analysis applied to the zonal mean-zonal wind anomalies averaged over the Antarctic circumpolar region (55–65°S; U55–65°S). The leading EOF explains 42% of the height-time variance of U55–65°S and depicts the variations of the vortex that is tightly tied to the seasonal breakdown of the vortex during late spring. The leading EOF pattern, defined here as the stratosphere-troposphere coupled mode, is characterized by variations in U55–65°S that develop in early winter near the stratopause, change sign from late winter to early spring, gain maximum amplitude during October in the upper stratosphere, and then extend downward to the surface from October to January. This stratosphere-troposphere coupling during the spring months appears to be preconditioned by anomalies in upward propagating planetary wave activity and a meridional shift of the vortex as high as the stratopause and as early as June. Interannual variations of the stratosphere-troposphere coupled mode are highly correlated with those of the tropospheric SAM, Antarctic stratospheric ozone concentration, Antarctic sea ice concentrations in the South Pacific and the Weddell Sea, and SH regional climate during late spring–early summer. Anomalies in the upper stratospheric flow as early as June are thus a potentially important source of predictability for the tropospheric SAM and its associated impacts on surface climate in spring and summer.
Original languageEnglish
Pages (from-to)12002-12016
Number of pages15
JournalJournal of Geophysical Research: Atmospheres
Volume123
Issue number21
Early online date22 Oct 2018
DOIs
Publication statusPublished - 16 Nov 2018

Cite this