TY - JOUR
T1 - Second coordination sphere effects on the mechanistic pathways for dioxygen activation by a ferritin: involvement of a Tyr radical and the identification of a cation binding site
AU - Yeh, Chieh-Chih George
AU - Mokkawes, Thirakorn
AU - Bradley, Justin M.
AU - Le Brun, Nick E.
AU - de Visser, Sam P.
N1 - Acknowledgements: This work was supported by BBSRC grant BB/R002363/1 to NELB and JMB.
Data sharing statement: All relevant data are presented in the main paper or in the Supporting Information, and are available from the authors upon reasonable request.
PY - 2022/7/5
Y1 - 2022/7/5
N2 - Ferritins are ubiquitous diiron enzymes involved in iron(II) detoxification and oxidative stress responses and can act as metabolic iron stores. The overall reaction mechanisms of ferritin enzymes are still unclear, particularly concerning the role of the conserved, near catalytic center Tyr residue. Thus, we carried out a computational study of a ferritin using a large cluster model of well over 300 atoms including its first- and second-coordination sphere. The calculations reveal important insight into the structure and reactivity of ferritins. Specifically, the active site Tyr residue delivers a proton and electron in the catalytic cycle prior to iron(II) oxidation. In addition, the calculations highlight a likely cation binding site at Asp65, which through long-range electrostatic interactions, influences the electronic configuration and charge distributions of the metal center. The results are consistent with experimental observations but reveal novel detail of early mechanistic steps that lead to an unusual mixed-valent iron(III)-iron(II) center.
AB - Ferritins are ubiquitous diiron enzymes involved in iron(II) detoxification and oxidative stress responses and can act as metabolic iron stores. The overall reaction mechanisms of ferritin enzymes are still unclear, particularly concerning the role of the conserved, near catalytic center Tyr residue. Thus, we carried out a computational study of a ferritin using a large cluster model of well over 300 atoms including its first- and second-coordination sphere. The calculations reveal important insight into the structure and reactivity of ferritins. Specifically, the active site Tyr residue delivers a proton and electron in the catalytic cycle prior to iron(II) oxidation. In addition, the calculations highlight a likely cation binding site at Asp65, which through long-range electrostatic interactions, influences the electronic configuration and charge distributions of the metal center. The results are consistent with experimental observations but reveal novel detail of early mechanistic steps that lead to an unusual mixed-valent iron(III)-iron(II) center.
U2 - 10.1002/cbic.202200257
DO - 10.1002/cbic.202200257
M3 - Article
VL - 23
JO - ChemBioChem
JF - ChemBioChem
SN - 1439-4227
IS - 13
M1 - e202200257
ER -