Projects per year
Abstract
Multiheme cytochromes (MHCs) are the building blocks of highly conductive micrometre-long supramolecular wires found in so-called electrical bacteria. Recent studies have revealed that these proteins possess a long supramolecular array of closely packed heme cofactors along the main molecular axis alternating between perpendicular and stacking configurations (TST = T-shaped, Stacked, T-shaped). While TST arrays have been identified as the likely electron conduit, the mechanisms of outstanding long-range charge transport observed in these structures remain unknown. Here we study charge transport on individual small tetraheme cytochromes (STCs) containing a single TST heme array. Individual STCs are trapped in a controllable nanoscale tunnelling gap. By modulating the tunnelling gap separation, we are able to selectively probe four different electron pathways involving 1, 2, 3 and 4 heme cofactors, respectively, leading to the determination of the electron tunnelling decay constant along the TST heme motif. Conductance calculations of selected single-STC junctions are in excellent agreement with experiments and suggest a mechanism of electron tunnelling with shallow length decay constant through an individual STC. These results demonstrate that an individual TST motif supporting electron tunnelling might contribute to a tunnelling-assisted charge transport diffusion mechanism in larger TST associations.
Original language | English |
---|---|
Pages (from-to) | 12326-12335 |
Number of pages | 10 |
Journal | Chemical Science |
Volume | 15 |
Issue number | 31 |
Early online date | 3 Jul 2024 |
DOIs | |
Publication status | Published - 21 Aug 2024 |
Projects
- 1 Finished
-
Characterisation of electron transport in a bracterial nano-wire through high performance computing and experimentation
Butt, J., Clarke, T., Meech, S. & Watmough, N.
Engineering and Physical Sciences Research Council
26/01/15 → 30/11/18
Project: Research