Abstract
Porous materials find application in separation, storage and catalysis. We report a crystalline porous solid formed by coordination of metal centres with a glycylserine dipeptide. We prove experimentally that the structure evolves from a solvated porous into a non-porous state as result of ordered displacive and conformational changes of the peptide that suppress the void space in response to environmental pressure. This cooperative closure, which recalls the folding of proteins, retains order in three-dimensions and is driven by the hydroxyl groups acting as H-bond donors in the peptide sequence through the serine residue. This ordered closure is also displayed by multipeptide solid solutions in which the combination of different sequences of amino acids controls their guest response in a non-linear way. This functional control can be compared to the effect of single point mutations in proteins, where the exchange of single amino acids can radically alter structure and function
Original language | English |
---|---|
Pages (from-to) | 343-351 |
Number of pages | 8 |
Journal | Nature Chemistry |
Volume | 6 |
Issue number | 4 |
Early online date | 23 Feb 2014 |
DOIs | |
Publication status | Published - Apr 2014 |
Profiles
-
Yaroslav Khimyak
- School of Chemistry, Pharmacy and Pharmacology - Professor in Solid-state NMR
- Pharmaceutical Materials and Soft Matter - Member
Person: Research Group Member, Academic, Teaching & Research