Simulations of micropolar nanofluid-equipped natural convective-driven flow in a cavity

Naeem Ullah, Sohail Nadeem, Luthais McCash, Anber Saleem, Alibek Issakhov

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Purpose: This paper aims to focus on the natural convective flow analysis of micropolar nanofluid fluid in a rectangular vertical container. A heated source is placed in the lower wall to generate the internal flow. In further assumptions, the left/right wall are kept cool, while the upper and lower remaining portions are insulated. Free convection prevails in the regime because of thermal difference in-between the lower warmer and upper colder region. Design/methodology/approach: The physical setup owns mathematical framework in-terms of non-linear partial differential equations. For the solution purpose of the differential system, finite volume method is adopted. The interesting features of the flow along with thermal transportation involve both translational and rotational movement of fluid particles. Findings: Performing the simulations towards flow controlling variables the outputs are put together in contour maps and line graphs. It is indicated that the variations in flow profile mass concentration and temperature field augments at higher Rayleigh parameter because of stronger buoyancy effects. Higher viscosity coefficient implies decrease in flow and thermal transportation. Further, the average heat transfer rate also grows by increasing both the Rayleigh parameter and heated source length. Originality/value: To the best of the authors’ knowledge, no such study has been addressed yet. Further, the results are validated by comparing with previously published work.

Original languageEnglish
Pages (from-to)2640-2659
Number of pages20
JournalInternational Journal of Numerical Methods for Heat & Fluid Flow
Volume31
Issue number8
Early online date6 Jan 2021
DOIs
Publication statusPublished - 10 Aug 2021

Keywords

  • Buongiorno
  • Microrotation
  • Model
  • Nanofluid
  • Natural convection
  • Numerical simulation

Cite this