TY - JOUR
T1 - Small molecule and peptide inhibitors of the pro-survival protein Mcl-1
AU - Howell, Lesley
AU - Beekman, Andrew
N1 - © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
PY - 2016/4/19
Y1 - 2016/4/19
N2 - The ability of protein–protein interactions to regulate cellular processes in both beneficial and detrimental ways has made them obvious drug targets. The Bcl-2 family of proteins undergo a series of protein–protein interactions which regulate the intrinsic cell-death pathway. The pro-survival members of the Bcl-2 family, including Bcl-2, Bcl-xL, and Mcl-1, are commonly overexpressed in a number of human cancers. Effective modulators of members of the Bcl-2 family have been developed and are undergoing clinical trials, but the efficient modulation of Mcl-1 is still not represented in the clinic. In addition, Mcl-1 is a major cause of resistance to radio- and chemotherapies, including inhibitors that target other Bcl-2 family members. Subsequently, the inhibition of Mcl-1 has become of significant interest to the scientific community. This review covers the progress made to date in modulating the activity of Mcl-1, by both stapled peptides and small molecules. The development of peptides as drug candidates, and the advancement of experimental and computational techniques used to discover small molecules are also highlighted.
AB - The ability of protein–protein interactions to regulate cellular processes in both beneficial and detrimental ways has made them obvious drug targets. The Bcl-2 family of proteins undergo a series of protein–protein interactions which regulate the intrinsic cell-death pathway. The pro-survival members of the Bcl-2 family, including Bcl-2, Bcl-xL, and Mcl-1, are commonly overexpressed in a number of human cancers. Effective modulators of members of the Bcl-2 family have been developed and are undergoing clinical trials, but the efficient modulation of Mcl-1 is still not represented in the clinic. In addition, Mcl-1 is a major cause of resistance to radio- and chemotherapies, including inhibitors that target other Bcl-2 family members. Subsequently, the inhibition of Mcl-1 has become of significant interest to the scientific community. This review covers the progress made to date in modulating the activity of Mcl-1, by both stapled peptides and small molecules. The development of peptides as drug candidates, and the advancement of experimental and computational techniques used to discover small molecules are also highlighted.
KW - Bcl-2
KW - Mcl-1
KW - protein–protein interactions
KW - small-molecule inhibitors
KW - stapled peptides
U2 - 10.1002/cmdc.201500497
DO - 10.1002/cmdc.201500497
M3 - Article
VL - 11
SP - 802
EP - 813
JO - ChemMedChem
JF - ChemMedChem
SN - 1860-7179
IS - 8
ER -