Abstract
Let F* be the finite field of q elements and let P(n,q) be the projective space of dimension n-1 over F*. We construct a family H^{n}_{k,i} of combinatorial homology modules associated to P(n,q) over a coefficient field F field of characteristic p_{0}>0 co-prime to q. As FGL(n,q)-representations the modules are obtained from the permutation action of GL(n,q) on the subspaces of F*^n. We prove a branching rule for H^{n}_{k,i} and use this rule to determine these homology representations completely. The main results are a duality theorem and the complete characterisation of H^{n}_{k,i} in terms of the standard irreducibles of GL(n,q) over F.
Original language | English |
---|---|
Pages (from-to) | 157-180 |
Number of pages | 24 |
Journal | Russian Academy of Science |
Volume | 414 |
Publication status | Published - 2013 |