TY - JOUR
T1 - Spatial variation in growth, maturation schedules and reproductive investment of female sole Solea solea in the Northeast Atlantic
AU - Mollet, Fabian M.
AU - Engelhard, Georg H.
AU - Vainikka, Anssi
AU - Laugen, Ane T.
AU - Rijnsdorp, Adriaan D.
AU - Ernande, Bruno
PY - 2013/11/1
Y1 - 2013/11/1
N2 - Latitudinal variation in life-history traits is often explained by phenotypically plastic responses or local adaptations to different thermal regimes. We compared growth, maturation schedules and reproductive investment of female sole Solea solea between 8 populations, covering much of the species' distribution in northern Europe, with respect to thermal gradients. An energy allocation model was fitted to size-age data, and probabilistic maturation reaction norms were estimated from size-age-maturity data. We found that northern populations from colder environments had higher rates of energy acquisition and reproductive investment, an intrinsic tendency to mature earlier, and had smaller asymptotic sizes than southern populations from warmer environments. Consequently, growth rate was higher before maturation but lower after maturation in the north compared to the south. This is opposite to Bergmann's rule according to which slower growth, delayed maturation and larger asymptotic sizes are usually observed at lower temperatures. The observed patterns could indicate strong countergradient thermal adaptation for rapid growth and development as well as sustained fecundity in the north, or indicate a response to other selection pressures correlated with the thermal gradient. Potentially higher mortality in northern populations during cold winters might be one of the key drivers of the observed geographical variation in growth and maturation of sole.
AB - Latitudinal variation in life-history traits is often explained by phenotypically plastic responses or local adaptations to different thermal regimes. We compared growth, maturation schedules and reproductive investment of female sole Solea solea between 8 populations, covering much of the species' distribution in northern Europe, with respect to thermal gradients. An energy allocation model was fitted to size-age data, and probabilistic maturation reaction norms were estimated from size-age-maturity data. We found that northern populations from colder environments had higher rates of energy acquisition and reproductive investment, an intrinsic tendency to mature earlier, and had smaller asymptotic sizes than southern populations from warmer environments. Consequently, growth rate was higher before maturation but lower after maturation in the north compared to the south. This is opposite to Bergmann's rule according to which slower growth, delayed maturation and larger asymptotic sizes are usually observed at lower temperatures. The observed patterns could indicate strong countergradient thermal adaptation for rapid growth and development as well as sustained fecundity in the north, or indicate a response to other selection pressures correlated with the thermal gradient. Potentially higher mortality in northern populations during cold winters might be one of the key drivers of the observed geographical variation in growth and maturation of sole.
UR - http://www.scopus.com/inward/record.url?scp=84887198621&partnerID=8YFLogxK
U2 - 10.1016/j.seares.2012.12.005
DO - 10.1016/j.seares.2012.12.005
M3 - Article
AN - SCOPUS:84887198621
VL - 84
SP - 109
EP - 121
JO - Journal of Sea Research
JF - Journal of Sea Research
SN - 1385-1101
ER -