Spatial variations in snowpack chemistry and isotopic composition of NO3- along a nitrogen deposition gradient in West Greenland

Chris J. Curtis, Jan Kaiser, Alina Marca, N. John Anderson, Gavin Simpson, Vivienne Jones, Erika Whiteford

Research output: Working paperDiscussion paper

19 Downloads (Pure)

Abstract

Snowpack chemistry, nitrate stable isotopes and net deposition fluxes for the largest ice-free region in Greenland were investigated to determine whether there are spatial gradients from the ice sheet margin to the coast linked to a gradient in precipitation. Late-season snowpack was sampled in March 2011 at 8 locations within 3 lake catchments in each of 3 regions (ice sheet margin in the east, central area near Kelly Ville and the coastal zone to the west). At the coast, snowpack accumulation averaged 181 mm snow water equivalent (SWE), compared with 36 mm SWE by the ice sheet. Coastal snowpack showed significantly greater concentrations of marine salts (Na+, Cl−, other major cations), ammonium (regional means 1.4–2.7 µmol L−1), total and non-sea salt sulfate (total 1.8–7.7, non-sea salt 1.0–1.8 µmol L−1) than the two inland regions. Nitrate (1.5–2.4 µmol L−1) showed significantly lower concentrations at the coast. Despite lower concentrations, higher precipitation at the coast results in a strong deposition gradient for NO3− as well as NH4+ and non-sea salt sulfate (nss-SO42−) increasing from the inland regions to the coast (lowest at Kelly Ville 6, 4 and 3; highest at coast 9, 17 and 11 mol ha−1 yr−1 of NO3−, NH4+ and nss-SO42− respectively). The δ(15N) of snowpack NO3− shows a significant decrease from the ice sheet margin (−7.5 ‰) to the coast (−11.3 ‰). We attribute the spatial gradient of δ(15N) in SW Greenland to post-deposition processing rather than differing sources because of (1) the climatic gradient from ice sheet margin to coast, (2) within-catchment isotopic differences between terrestrial snowpack and lake-ice snowpack, and (3) similarities between fresh snow (rather than accumulated snowpack) at Kelly Ville and the coast. Hence the δ(15N) of coastal snowpack is most representative of snowfall in SW Greenland, but after deposition the effects of photolysis, volatilization and sublimation lead to enrichment of the remaining snowpack with the greatest effect in inland areas of low precipitation and high sublimation losses.
Original languageEnglish
PublisherCopernicus Publications
ISBN (Electronic)1810-6285
ISBN (Print)1810-6277
DOIs
Publication statusPublished - 30 May 2017

Publication series

NameBiogeosciences discussion papers
PublisherCopernicus Publications
ISSN (Print)1810-6277
ISSN (Electronic)1810-6285

Cite this