Speed breeding in growth chambers and glasshouses for crop breeding and model plant research

Sreya Ghosh, Amy Watson, Oscar E. Gonzalez-Navarro, Ricardo H. Ramirez-Gonzalez, Luis Yanes, Marcela Mendoza-Suárez, James Simmonds, Rachel Wells, Tracey Rayner, Phon Green, Amber Hafeez, Sadiye Hayta, Rachel E. Melton, Andrew Steed, Abhimanyu Sarkar, Jeremy Carter, Lionel Perkins, John Lord, Mark Tester, Anne OsbournMatthew J. Moscou, Paul Nicholson, Wendy Harwood, Cathie Martin, Claire Domoney, Cristobal Uauy, Brittany Hazard, Brande B. H. Wulff, Lee T. Hickey

Research output: Contribution to journalArticlepeer-review

267 Citations (Scopus)
247 Downloads (Pure)

Abstract

‘Speed breeding’ (SB) shortens the breeding cycle and accelerates crop research through rapid generation advancement. SB can be carried out in numerous ways, one of which involves extending the duration of plants’ daily exposure to light, combined with early seed harvest, to cycle quickly from seed to seed, thereby reducing the generation times for some long-day (LD) or day-neutral crops. In this protocol, we present glasshouse and growth chamber–based SB approaches with supporting data from experimentation with several crops. We describe the conditions that promote the rapid growth of bread wheat, durum wheat, barley, oat, various Brassica species, chickpea, pea, grass pea, quinoa and Brachypodium distachyon. Points of flexibility within the protocols are highlighted, including how plant density can be increased to efficiently scale up plant numbers for single-seed descent (SSD). In addition, instructions are provided on how to perform SB on a small scale in a benchtop growth cabinet, enabling optimization of parameters at a low cost.
Original languageEnglish
Pages (from-to)2944–2963
Number of pages20
JournalNature Protocols
Volume13
DOIs
Publication statusPublished - 16 Nov 2018

Cite this