Abstract
Authigenic magnesite, hydromagnesite and huntite associated with intensely altered and serpentinized ophiolitic rocks in Attica (mainland Greece) occur predominantly as veinlets and nodules within a totally weathered former-serpentinite groundmass. Carbonate δ18O values are consistent with post-geothermal fluid temperatures between 25-70 ˚C, but mostly between 25-30 ˚C, from a dominantly meteoric-sourced groundwater, indicating near-surface, low-temperature conditions. Despite the proximity of a volcanic centre with strong CO2 flux, 75% of the carbon isotope data imply little or no incorporation of this CO2 into the authigenic Mg-(hydro)carbonates. Indeed, many δ13C values are more negative than soil-zone calcrete values, and in this setting Mg-(hydro)carbonate δ13C below -6‰ VPDB probably indicate disequilibrium effects in alkaline groundwaters. Geothermal fluids and groundwaters were mainly routed through structural conduits. Some of the low temperature hydromagnesite subsequently dehydrated to magnesite under near-surface conditions, while huntite is likely a diagenetic transformation of hydromagnesite, forming close to the volcanic centre where fluid Mg/Ca ratios were low. The isotopic signatures are distinct from previously published Balkan-East Mediterranean magnesite data arrays but are consistent with many other ultramafic-associated magnesium carbonates worldwide; their association with likely fluid compositions provide important context for Mg-(hydro)carbonate formation as geothermal conditions cool to near surface temperatures.
Original language | English |
---|---|
Pages (from-to) | 361-375 |
Number of pages | 15 |
Journal | Journal of the Geological Society |
Volume | 175 |
Issue number | 2 |
Early online date | 14 Dec 2017 |
DOIs | |
Publication status | Published - Mar 2018 |
Profiles
-
Julian Andrews
- School of Environmental Sciences - Emeritus Professor
- Geosciences - Member
- ClimateUEA - Member
Person: Honorary, Member, Research Group Member