TY - JOUR
T1 - Steady axisymmetric creeping plumes above a planar boundary. Part 2. A distributed source
AU - Whittaker, Robert J.
AU - Lister, John R.
PY - 2006
Y1 - 2006
N2 - Asymptotic solutions are obtained for an axisymmetric plume rising from a localized heat source at the base of a half-space filled with very viscous fluid. Specifically, we consider sources comprising a heated disk with either rigid (no-slip) or free-slip (no tangential stress) conditions on the lower boundary. The boundary layer which forms above the source is solved using stretched coordinates, and then matched to a slender plume which rises above it. At large Rayleigh numbers, the Nusselt number is given by $Nu \sim 4.06 Ra^{1/3}(\ln Ra)^{-1/3}$ (free-slip boundary) and $Nu \sim 2.90 Ra^{1/5}$ (rigid boundary), where the Rayleigh number is based on the radius of the source. Both these expressions have corrections arising from a slender-body expansion in powers of $(\ln Ra)^{-1}$.
AB - Asymptotic solutions are obtained for an axisymmetric plume rising from a localized heat source at the base of a half-space filled with very viscous fluid. Specifically, we consider sources comprising a heated disk with either rigid (no-slip) or free-slip (no tangential stress) conditions on the lower boundary. The boundary layer which forms above the source is solved using stretched coordinates, and then matched to a slender plume which rises above it. At large Rayleigh numbers, the Nusselt number is given by $Nu \sim 4.06 Ra^{1/3}(\ln Ra)^{-1/3}$ (free-slip boundary) and $Nu \sim 2.90 Ra^{1/5}$ (rigid boundary), where the Rayleigh number is based on the radius of the source. Both these expressions have corrections arising from a slender-body expansion in powers of $(\ln Ra)^{-1}$.
U2 - 10.1017/S0022112006002382
DO - 10.1017/S0022112006002382
M3 - Article
VL - 567
SP - 379
EP - 397
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
ER -