Strictly Positive Measures on Boolean Algebras

M Džamonja, G Plebanek

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

We investigate strictly positive finitely additive measures on Boolean algebras and strictly positive Radon measures on compact zerodimensional spaces. The motivation is to find a combinatorial characterisation of Boolean algebras which carry a strictly positive finitely additive finite measure with some additional properties, such as separability or nonatomicity. A possible consistent characterisation for an algebra to carry a separable strictly positive measure was suggested by Talagrand in 1980, which is that the Stone space K of the algebra satisfies that its space M(K) of measures is weakly separable, equivalently that C(K) embeds into l8. We show that there is a ZFC example of a Boolean algebra (so of a compact space) which satisfies this condition and does not support a separable strictly positive measure. However, we use this property as a tool in a proof which shows that under MA+\neg CH every atomless ccc Boolean algebra of size <
Original languageEnglish
Pages (from-to)1416-1432
Number of pages17
JournalJournal of Symbolic Logic
Volume73
Issue number4
DOIs
Publication statusPublished - 1 Dec 2008

Cite this