Structural and optical characterization of high-quality ZnO thin films deposited by reactive RF magnetron sputtering

X. L. Zhang, K. N. Hui, K. S. Hui, Jai Singh

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)


ZnO thin films were deposited onto quartz substrates by radio frequency (RF) reactive magnetron sputtering using a Zn target. The structural and optical properties of the ZnO thin films were investigated comprehensively by X-ray diffraction (XRD), ultraviolet-visible and photoluminescence (PL) measurements. The effects of the oxygen content of the total oxygen-argon mixture and sputtering voltage in the sputtering process on the structural and optical properties of the ZnO films were studied systemically. The microstructural parameters, such as the lattice constant, crystallite size, stress and strain, were also calculated and correlated with the structural and optical properties of the ZnO films. In addition, the results showed that the crystalline quality of ZnO thin films improved with increasing O2/Ar gas flow ratio from 2:8 to 8:2. XRD and PL spectroscopy revealed 800 V to be the most appropriate sputtering voltage for ZnO thin film growth. High-quality ZnO films with a good crystalline structure, tunable optical band gap as well as high transmittance could be fabricated easily by RF reactive magnetron sputtering, paving the way to obtaining cost-effective ZnO thin films transparent conducting oxides for optoelectronics applications.

Original languageEnglish
Pages (from-to)1093-1098
Number of pages6
JournalMaterials Research Bulletin
Issue number3
Early online date13 Dec 2012
Publication statusPublished - Mar 2013


  • A. Oxides
  • A. Thin films
  • B. Sputtering
  • D. Microstructure
  • D. Optical properties

Cite this