Abstract
To replace the traditional electric heating mode and increase methanol steam reforming reaction performance in hydrogen production, methanol catalytic combustion was proposed as heat-supply mode for methanol steam reforming microreactor. In this study, the methanol catalytic combustion microreactor and self-thermal methanol steam reforming microreactor for hydrogen production were developed. Furthermore, the catalytic combustion reaction supports with different structures were designed. It was found that the developed self-thermal methanol steam reforming microreactor had better reaction performance. Compared with A-type, the △Tmax of C-type porous reaction support was decreased by 24.4 °C under 1.3 mL/min methanol injection rate. Moreover, methanol conversion and H2 flow rate of the self-thermal methanol steam reforming microreactor with C-type porous reaction support were increased by 15.2% under 10 mL/h methanol-water mixture injection rate and 340 °C self-thermal temperature. Meanwhile, the CO selectivity was decreased by 4.1%. This work provides a new structural design of the self-thermal methanol steam reforming microreactor for hydrogen production for the fuel cell.
Original language | English |
---|---|
Pages (from-to) | 22437-22447 |
Number of pages | 11 |
Journal | International Journal of Hydrogen Energy |
Volume | 45 |
Issue number | 43 |
Early online date | 12 Jul 2020 |
DOIs | |
Publication status | Published - 3 Sep 2020 |
Keywords
- Microreactor for hydrogen production
- Porous reaction support
- Self-thermal reaction
- Thermal distribution
Profiles
-
Oscar Hui
- School of Engineering - Reader in Energy Storage & Conversion
- Emerging Technologies for Electric Vehicles (EV) - Member
- Energy Materials Laboratory - Member
- ClimateUEA - Member
Person: Member, Research Group Member, Academic, Teaching & Research