137Cs and 40K in Cortinarius caperatus mushrooms (1996–2016) in Poland - Bioconcentration and estimated intake: 137Cs in Cortinarius spp. from the Northern Hemisphere from 1974 to 2016

Jerzy Falandysz, Tamara Zalewska, Alwyn Fernandes

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
15 Downloads (Pure)


Cortinarius caperatus grows in the northern regions of Europe, North America and Asia and is widely collected by mushroom foragers across Europe. This study shows that in the last three decades since the Chernobyl nuclear accident, C. caperatus collected across much of Northern Poland exhibited high activity concentrations of radiocaesium (137Cs) - a long-lived radionuclide. The mushroom appears to efficiently bioconcentrate 137Cs from contaminated soil substrata followed by sequestration into its morphological parts such as the cap and stipe which are used as food. The gradual leaching of 137Cs into the lower strata of surface soils in exposed areas are likely to facilitate higher bioavailability to the mycelia of this species which penetrate to relatively greater depths and may account for the continuing high activity levels noticed in Polish samples (e.g. activity within caps in some locations was still at 11,000 Bq kg−1 dw in 2008 relative to a peak of 18,000 in 2002). The associated dietary intake levels of 137Cs have often exceeded the tolerance limits set by the European Union (370 and 600 Bq kg−1 ww for children and adults respectively) during the years 1996–2010. Human dietary exposure to 137Cs is influenced by the method of food preparation and may be mitigated by blanching followed by disposal of the water, rather than direct consumption after stir-frying or stewing. It may be prudent to provide precautionary advice and monitor activity levels, as this mushroom continues to be foraged by casual as well as experienced mushroom hunters.
Original languageEnglish
Article number113208
JournalEnvironmental Pollution
Early online date12 Sep 2019
Publication statusPublished - Dec 2019

Cite this