Projects per year
Abstract
Supramolecular hydrogels are composed of self-assembled solid networks that restrict the flow of water. L-phenylalanine is the smallest molecule reported to date to form gel networks in water, and it is of particular interest due to its crystalline gel state. Single and multi-component hydrogels of L-phenylalanine are used herein as model materials to develop an NMR-based analytical approach to gain insight into the mechanisms of supramolecular gelation. Structure and composition of the gel fibres were probed using PXRD, solid-state NMR experiments and microscopic techniques. Solution-state NMR studies probed the properties of free gelator molecules in an equilibrium with bound molecules. The dynamics of exchange at the gel/solution interfaces was investigated further using HR-MAS and saturation transfer difference (STD) NMR experiments. This approach allowed us to identify which additive molecules contributed in modifying the material properties.
Original language | English |
---|---|
Pages (from-to) | 8014–8024 |
Journal | Chemistry - A European Journal |
Volume | 23 |
Issue number | 33 |
Early online date | 12 Apr 2017 |
DOIs | |
Publication status | Published - 12 Jun 2017 |
Profiles
-
Jesus Angulo
- School of Chemistry, Pharmacy and Pharmacology - Honorary Senior Lecturer
- Pharmaceutical Materials and Soft Matter - Member
Person: Honorary, Research Group Member
-
Yaroslav Khimyak
- School of Chemistry, Pharmacy and Pharmacology - Professor in Solid-state NMR
- Pharmaceutical Materials and Soft Matter - Member
Person: Research Group Member, Academic, Teaching & Research
-
Andy Round
Person: Academic, Teaching & Research
Projects
- 1 Finished