TY - JOUR
T1 - Surface rearrangement of adsorbed EGCG–mucin complexes on hydrophilic surfaces
AU - McColl, J.
AU - Horvath, R.
AU - Yakubov , G. E.
AU - Ramsden, J. J.
PY - 2017/2
Y1 - 2017/2
N2 - The kinetic adsorption–desorption behaviour of porcine gastric mucin in the presence of physiologically relevant concentrations of the polyphenol epigallocatechin gallate (EGCG) was investigated using high-resolution kinetic optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). Comparison with dynamic light scattering results from EGCG–mucin mixtures indicates that discrete particles are formed whose size increases with increasing EGCG:mucin ratio. These particles are deduced to be the adsorbing entities, which fuse on the surface to form complex surface layers. At low molar EGCG:mucin ratios (<∼1000), aggregates fuse on the surface to form a monolayer similar to one of pure mucin. With increasing EGCG concentration, the surface assembly of aggregates becomes consistent with their rearrangement and spreading in the shape of a spherical segment. At the highest molar ratios investigated (>12,000) the particles begin to destabilize. The presence of EGCG leads to birefringence hysteresis during adsorption–desorption, indicating structural rearrangement, even at molar ratios ∼1000. The intensification of the phenomenon with increasing EGCG:mucin ratio mimics what was previously observed with the increase of mucin concentration in an EGCG-free system.
AB - The kinetic adsorption–desorption behaviour of porcine gastric mucin in the presence of physiologically relevant concentrations of the polyphenol epigallocatechin gallate (EGCG) was investigated using high-resolution kinetic optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). Comparison with dynamic light scattering results from EGCG–mucin mixtures indicates that discrete particles are formed whose size increases with increasing EGCG:mucin ratio. These particles are deduced to be the adsorbing entities, which fuse on the surface to form complex surface layers. At low molar EGCG:mucin ratios (<∼1000), aggregates fuse on the surface to form a monolayer similar to one of pure mucin. With increasing EGCG concentration, the surface assembly of aggregates becomes consistent with their rearrangement and spreading in the shape of a spherical segment. At the highest molar ratios investigated (>12,000) the particles begin to destabilize. The presence of EGCG leads to birefringence hysteresis during adsorption–desorption, indicating structural rearrangement, even at molar ratios ∼1000. The intensification of the phenomenon with increasing EGCG:mucin ratio mimics what was previously observed with the increase of mucin concentration in an EGCG-free system.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85008701970&partnerID=MN8TOARS
U2 - 10.1016/j.ijbiomac.2016.11.108
DO - 10.1016/j.ijbiomac.2016.11.108
M3 - Article
VL - 95
SP - 704
EP - 712
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
SN - 0141-8130
ER -