Abstract
A series of rigid microporous poly(aryleneethynylene) (PAE) networks was synthesized by Sonogashira-Hagihara coupling chemistry. PAEs with apparent Brunauer-Emmet-Teller surface areas of more than 1000 m2/g were produced. The materials were found to have very good chemical and thermal stability and retention of microporosity under a variety of conditions. It was shown that physical properties such as micropore size, surface area, and hydrogen uptake could be controlled in a “quantized” fashion by varying the monomer strut length, as for metal-organic and covalent organic frameworks, even though the networks were amorphous in nature. For the first time, it was demonstrated that these properties can also be fine-tuned in a continuous manner via statistical copolymerization of monomer struts with differing lengths. This provides an unprecedented degree of direct synthetic control over micropore properties in an organic network.
| Original language | English |
|---|---|
| Pages (from-to) | 7710-7720 |
| Number of pages | 11 |
| Journal | Journal of the American Chemical Society |
| Volume | 130 |
| Issue number | 24 |
| DOIs | |
| Publication status | Published - 18 Jun 2008 |