Temperature effects on life-history trade-offs, germline maintenance and mutation rate under simulated climate warming

David Berger, Josefine Stångberg, Karl Grieshop, Ivain Martinossi-Allibert, Göran Arnqvist

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)


Mutation has a fundamental influence over evolutionary processes, but how evolutionary processes shape mutation rate remains less clear. In asexual unicellular organism, increased mutation rates have been observed in stressful environments and the reigning paradigm ascribes this increase to selection for evolvability. However, this explanation does not apply in sexually reproducing species, where little is known about how the environment affects mutation rate. Here we challenged experimental lines of seed beetle, evolved at ancestral temperature or under simulated climate warming, to repair induced mutations at ancestral and stressful temperature. Results show that temperature stress causes individuals to pass on a greater mutation load to their grand-offspring. This suggests that stress-induced mutation rates, in unicellular and multicellular organisms alike, can result from compromised germline DNA repair in low condition individuals. Moreover, lines adapted to simulated climate warming had evolved increased longevity at the cost of reproduction, and this allocation decision improved germline repair. These results suggest that mutation rates can be modulated by resource allocation trade-offs encompassing life-history traits and the germline and have important implications for rates of adaptation and extinction as well as our understanding of genetic diversity in multicellular organisms.

Original languageEnglish
Article number20171721
JournalProceedings of the Royal Society B: Biological Sciences
Issue number1866
Publication statusPublished - 15 Nov 2017


  • Climate change
  • Life history
  • Mutation rate
  • Phenotypic plasticity
  • Temperature adaptation
  • Trade-off

Cite this