Abstract
Symmetries play a fundamental role in modern theories of gravity. The strong equivalence principle (SEP) constitutes a collection of gravitational symmetries which are all implemented by general relativity. Alternative theories, however, are generally expected to violate some aspects of SEP. We test three aspects of SEP using observed change rates in the orbital period and eccentricity of binary pulsar J1713+0747: (1) the gravitational constant's constancy as part of locational invariance of gravitation; (2) the universality of free fall (UFF) for strongly self-gravitating bodies; (3) the post-Newtonian parameter to in gravitational Lorentz invariance. Based on the pulsar timing result of the combined data set from the North American Nanohertz Gravitational Observatory and the European Pulsar Timing Array, we find (G) over dot/G = (-0.1 +/- 0.9) x 10(-12) yr(-1) , which is weaker than Solar system limits, but applies for strongly self-gravitating objects. Furthermore, we obtain an improved test for a UFF violation by a strongly self-gravitating mass falling in the gravitational field of our Galaxy, with a limit of vertical bar Delta vertical bar<0.002 (95 per cent C.L.). Finally, we derive an improved limit on the self-acceleration of a gravitationally bound rotating body, to a preferred reference frame in the Universe, with -3 x 10(-20) <(3) <4 x 10(-20) (95 per cent C.L.). These results are based on direct UFF and (alpha) over cap (3 )tests using pulsar binaries, and they overcome various limitations of previous tests of this kind.
Original language | English |
---|---|
Pages (from-to) | 3249-3260 |
Number of pages | 12 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 482 |
Issue number | 3 |
Early online date | 27 Oct 2018 |
DOIs | |
Publication status | Published - Jan 2019 |
Keywords
- gravitation
- binaries: general
- stars: neutron
- pulsars: individual (PSR J1713+0747)
- STRONG EQUIVALENCE PRINCIPLE
- RELATIVISTIC GRAVITY
- LORENTZ INVARIANCE
- CONSERVATION-LAWS
- SCALAR THEORIES
- MASS
- DENSITY
- LIMITS
- STARS
Profiles
-
Robert Ferdman
- School of Engineering, Mathematics and Physics - Associate Professor in Physics
- Numerical Simulation, Statistics & Data Science - Member
- Quantum Matter - Member
Person: Research Group Member, Academic, Teaching & Research