The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1

Daniel Couto (Lead Author), Roda Niebergall (Lead Author), Xiangxiu Liang, Christoph Buecherl, Jan Sklenar, Alberto Macho, Vardis Ntoukakis, Paul Derbyshire, Denise Altenbach, Dan MacLean, Silke Robatzek, Joachim Uhrig, Frank Menke, Jian-Min Zhou, Cyril Zipfel

Research output: Contribution to journalArticlepeer-review

101 Citations (Scopus)
36 Downloads (Pure)


Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component.
Original languageEnglish
Article numbere1005811
JournalPLoS Pathogens
Issue number8
Publication statusPublished - 5 Aug 2016

Cite this