The drivers and impacts of Amazon forest degradation

David M. Lapola, Patricia Pinho, Jos Barlow, Luiz E. O. C. Aragão, Erika Berenguer, Rachel Carmenta, Hannah M. Liddy, Hugo Seixas, Camila V. J. Silva, Celso H. L. Silva-Junior, Ane A. C. Alencar, Liana O. Anderson, Dolors Armenteras, Victor Brovkin, Kim Calders, Jeffrey Chambers, Louise Chini, Marcos H. Costa, Bruno L. Faria, Philip M. FearnsideJoice Ferreira, Luciana Gatti, Victor Hugo Gutierrez-Velez, Zhangang Han, Kathleen Hibbard, Charles Koven, Peter Lawrence, Julia Pongratz, Bruno T. T. Portela, Mark Rounsevell, Alex C. Ruane, Rüdiger Schaldach, Sonaira S. da Silva, Celso von Randow, Wayne S. Walker

Research output: Contribution to journalArticlepeer-review

72 Citations (Scopus)
9 Downloads (Pure)

Abstract

BACKGROUND: Most analyses of land-use and land-cover change in the Amazon forest have focused on the causes and effects of deforestation. However, anthropogenic disturbances cause degradation of the remaining Amazon forest and threaten their future. Among such disturbances, the most important are edge effects (due to deforestation and the resulting habitat fragmentation), timber extraction, fire, and extreme droughts that have been intensified by human-induced climate change. We synthesize knowledge on these disturbances that lead to Amazon forest degradation, including their causes and impacts, possible future extents, and some of the interventions required to curb them.

ADVANCES: Analysis of existing data on the extent of fire, edge effects, and timber extraction between 2001 and 2018 reveals that 0.36 ×106 km2 (5.5%) of the Amazon forest is under some form of degradation, which corresponds to 112% of the total area deforested in that period. Adding data on extreme droughts increases the estimate of total degraded area to 2.5 ×106 km2, or 38% of the remaining Amazonian forests. Estimated carbon loss from these forest disturbances ranges from 0.05 to 0.20 Pg C year−1 and is comparable to carbon loss from deforestation (0.06 to 0.21 Pg C year−1). Disturbances can bring about as much biodiversity loss as deforestation itself, and forests degraded by fire and timber extraction can have a 2 to 34% reduction in dry-season evapotranspiration. The underlying drivers of disturbances (e.g., agricultural expansion or demand for timber) generate material benefits for a restricted group of regional and global actors, whereas the burdens permeate across a broad range of scales and social groups ranging from nearby forest dwellers to urban residents of Andean countries. First-order 2050 projections indicate that the four main disturbances will remain a major threat and source of carbon fluxes to the atmosphere, independent of deforestation trajectories.

OUTLOOK: Whereas some disturbances such as edge effects can be tackled by curbing deforestation, others, like constraining the increase in extreme droughts, require additional measures, including global efforts to reduce greenhouse gas emissions. Curbing degradation will also require engaging with the diverse set of actors that promote it, operationalizing effective monitoring of different disturbances, and refining policy frameworks such as REDD+. These will all be supported by rapid and multidisciplinary advances in our socioenvironmental understanding of tropical forest degradation, providing a robust platform on which to co-construct appropriate policies and programs to curb it.
Original languageEnglish
JournalScience
Volume379
Issue number6630
DOIs
Publication statusPublished - 27 Jan 2023

Cite this