The effects of Ca2+ and Sr2+ on Ca2+-sensitive biochemical changes in human erythrocytes and their membranes

D. Allan, Paul Thomas

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


1. The Ca2+-dependency of K+ efflux, microvesiculation and breakdown of polyphosphoinositides and of ankyrin have been measured in intact human erythrocytes exposed to ionophore A23187 and HEDTA [N'-(2-hydroxyethyl)ethylenediamine NNN'-triacetate]-Ca2+ buffers. Half-maximal responses were observed at pCa values of 6.4, 4.1, 5.0 and 4.8 respectively. 2. The Ca2+ dependencies of K+ efflux and breakdown of polyphosphoinositides and ankyrin measured in erythrocyte ghosts without addition of ionophore showed almost identical values with those seen in whole cells treated with ionophore. 3. We conclude that ionophore A23187 is able to cause rapid equilibration of extracellular and intracellular [Ca2+] in intact cells and that in the presence of a suitable Ca2+ buffer, ionophore A23187 can be used to precisely fix the intracellular concentration of Ca2+ in erythrocytes. 4. The relatively high concentration of Ca2+ required to produce microvesiculation in intact cells may indicate that microvesiculation could be at least partly dependent on a direct interaction of Ca2+ with phospholipid. 5. Results obtained with Sr2+ paralleled those with Ca2+, although higher Sr2+ concentrations were required to achieve the same effects as Ca2+. Mg2+ produced none of the changes seen with Ca2+ or Sr2+.
Original languageEnglish
Pages (from-to)441-445
Number of pages5
JournalBiochemical Journal
Issue number3
Publication statusPublished - 15 Sep 1981

Cite this