The effects of inorganic phosphate (Pi) and Arsenate on passive mammalian muscle visco-elasticity in chemically skinned rat fast and slow twitch muscle fibres

Gabriel Mutungi

Research output: Contribution to journalArticle

3 Citations (Scopus)


The effects of adding either 25 mM inorganic phosphate (Pi) or its structural analogue arsenate (ASi) on both the maximum Ca2+ activated tension (Po) and passive muscle visco-elasticity (P2 tension) were investigated at 10°C, using segments of single, chemically skinned rat muscle fibres. Whilst the results confirmed some previous findings on the effects of Pi on Po, they also showed that the addition of 25 mM ASi led to a large (∼50%) but completely reversible depression of Po in both the fast and slow twitch rat muscle fibres. Moreover, the depression of Po by ASi was greater at low than at high pH values. Examined in the presence of Dextran T-500, the passive tension and sarcomere length responses to a ramp stretch were found to be qualitatively and quantitatively similar to those previously reported in intact rat muscle fibres. Thus, the tension response to a ramp stretch, in the presence and absence of either 25 mM Pi or ASi, consisted of a viscous (P1), a visco-elastic (P2) and an elastic (P3) tension. However, the addition of either 25 mM Pi or ASi led to ∼15–18% increase in the amplitude of the visco-elastic (P2) tension but had little or no effect on the amplitudes of the other two tension components (viscous, P1 and elastic, P3 tensions). Furthermore, neither compound significantly altered the relaxation rate of the passive muscle visco-elasticity (P2 tension). These results show that Po (arising from cycling cross-bridges) and passive muscle visco-elasticity (P2 tension) are affected differently by both Pi and ASi and suggest that they may not share a common structural basis. The possibility that passive muscle visco-elasticity (P2 tension) arises from the gap-(titin) filament (as suggested previously by Mutungi and Ranatunga, 1996b J Physiol 496: 827–837) and that Pi and ASi increase its amplitude by interacting with the PEVK region of the filament are discussed.
Original languageEnglish
Pages (from-to)65-75
Number of pages11
JournalJournal of Muscle Research and Cell Motility
Issue number1
Publication statusPublished - 2003

Cite this