The effects of temperature acclimation on the oxygen consumption and enzyme activity of red and white muscle fibres isolated from the freshwater fish Oreochromis niloticus

DM Mwangangi, GM Mutungi

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

The standard oxygen consumption rate and the activities of muscle citrate synthase, creatine phosphokinase and lactate dehydrogenase in the tropical fish Oreochromis niloticus acclimated to either 20.5 ± 0.3° C or 26.5 ± 0 ± 5 ± C for at least 3 months were investigated. The standard oxygen consumption rate of individual fish from the two acclimation temperatures was determined at 20, 25 and 30 ± C. At all experimental temperatures, the standard oxygen consumption rate of fish acclimated to 20.5 ± 0.3° C was significantly higher than that of fish kept at 26.5 ± 0.5 ± C. In both groups smaller individuals had a higher oxygen consumption rate than large ones.

Analyses of the activity levels of citrate synthase (CS), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) in both red and white muscles isolated from fish kept under the two temperature regimes were performed at 26 ± C. The activity of CS in both red and white muscles isolated from the 20.5 ± 0.3° C acclimated fish was significantly higher than that of muscles isolated from the 26.5 ± 0.5 ± C acclimation group. Similarly, the CPK activity in white muscles isolated from fish acclimated to 20.5 ± 0.3 ± C was higher than that of muscles obtained from the 26.5 ± 0.5 ± C acclimation group. However, the CPK activity in red muscles isolated from the two fish groups was not significantly different. The opposite results were obtained for LDH activity. For example, the LDH activity of white muscles isolated from fish acclimated to 26.5 ± 0.5 ± C was significantly higher than that of the same muscles but from the 20.5 ± 0.3 ± C acclimated fish. No differences were observed in the LDH activity of red muscles isolated from the two fish groups.
Original languageEnglish
Pages (from-to)1033-1043
Number of pages11
JournalJournal of Fish Biology
Volume44
Issue number6
DOIs
Publication statusPublished - 1994

Cite this