TY - JOUR
T1 - The energetics of flow through a rapidly oscillating tube. Part 2. Application to an elliptical tube
AU - Whittaker, Robert J.
AU - Heil, Matthias
AU - Boyle, Jonathan
AU - Jensen, Oliver E.
AU - Waters, Sarah L.
PY - 2010
Y1 - 2010
N2 - In Part 1 of this work, we derived general asymptotic results for the three-dimensional flow field and energy fluxes for flow within a tube whose walls perform prescribed small-amplitude periodic oscillations of high frequency and large axial wavelength. In the current paper, we illustrate how these results can be applied to the case of flow through a finite-length axially non-uniform tube of elliptical cross-section – a model of flow in a Starling resistor. The results of numerical simulations for three model problems (an axially uniform tube under pressure–flux and pressure–pressure boundary conditions and an axially non-uniform tube with prescribed flux) with prescribed wall motion are compared with the theoretical predictions made in Part 1, each showing excellent agreement. When upstream and downstream pressures are prescribed, we show how the mean flux adjusts slowly under the action of Reynolds stresses using a multiple-scale analysis. We test the asymptotic expressions obtained for the mean energy transfer E from the flow to the wall over a period of the motion. In particular, the critical point at which E = 0 is predicted accurately: this point corresponds to energetically neutral oscillations, the condition which is relevant to the onset of global instability in the Starling resistor.
AB - In Part 1 of this work, we derived general asymptotic results for the three-dimensional flow field and energy fluxes for flow within a tube whose walls perform prescribed small-amplitude periodic oscillations of high frequency and large axial wavelength. In the current paper, we illustrate how these results can be applied to the case of flow through a finite-length axially non-uniform tube of elliptical cross-section – a model of flow in a Starling resistor. The results of numerical simulations for three model problems (an axially uniform tube under pressure–flux and pressure–pressure boundary conditions and an axially non-uniform tube with prescribed flux) with prescribed wall motion are compared with the theoretical predictions made in Part 1, each showing excellent agreement. When upstream and downstream pressures are prescribed, we show how the mean flux adjusts slowly under the action of Reynolds stresses using a multiple-scale analysis. We test the asymptotic expressions obtained for the mean energy transfer E from the flow to the wall over a period of the motion. In particular, the critical point at which E = 0 is predicted accurately: this point corresponds to energetically neutral oscillations, the condition which is relevant to the onset of global instability in the Starling resistor.
U2 - 10.1017/S0022112009992916
DO - 10.1017/S0022112009992916
M3 - Article
VL - 648
SP - 123
EP - 153
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
ER -