TY - JOUR
T1 - The enzymatic activity of ADAM8 and ADAM9 is not regulated by TIMPs
AU - Amour, Augustin
AU - Knight, C. Graham
AU - English, William R.
AU - Webster, Ailsa
AU - Slocombe, Patrick M.
AU - Knäuper, Vera
AU - Docherty, Andrew J. P.
AU - Becherer, J. David
AU - Blobel, Carl P.
AU - Murphy, Gillian
PY - 2002/7/31
Y1 - 2002/7/31
N2 - The ADAM family of proteases are type I transmembrane proteins with both metalloproteinase and disintegrin containing extracellular domains. ADAMs are implicated in the proteolytic processing of membrane-bound precursors and involved in modulating cell–cell and cell–matrix interactions. ADAM8 (MS2, CD156) has been identified in myeloid and B cells. In this report we demonstrate that soluble ADAM8 is an active metalloprotease in vitro and is able to hydrolyse myelin basic protein and a variety of peptide substrates based on the cleavage sites of membrane-bound cytokines, growth factors and receptors which are known to be processed by metalloproteinases. Interestingly, although ADAM8 was inhibited by a number of peptide analogue hydroxamate inhibitors, it was not inhibited by the tissue inhibitors of metalloproteinases (TIMPs). We also demonstrate that the activity of recombinant soluble ADAM9 (meltrin-γ, MDC9) lacks inhibition by the TIMPs, but can be inhibited by hydroxamate inhibitors. The lack of TIMP inhibition of ADAM8 and 9 contrasts with other membrane-associated metalloproteinases characterised to date in this respect (ADAM10, 12, 17, and the membrane-type metalloproteinases) which have been implicated in protein processing at the cell surface.
AB - The ADAM family of proteases are type I transmembrane proteins with both metalloproteinase and disintegrin containing extracellular domains. ADAMs are implicated in the proteolytic processing of membrane-bound precursors and involved in modulating cell–cell and cell–matrix interactions. ADAM8 (MS2, CD156) has been identified in myeloid and B cells. In this report we demonstrate that soluble ADAM8 is an active metalloprotease in vitro and is able to hydrolyse myelin basic protein and a variety of peptide substrates based on the cleavage sites of membrane-bound cytokines, growth factors and receptors which are known to be processed by metalloproteinases. Interestingly, although ADAM8 was inhibited by a number of peptide analogue hydroxamate inhibitors, it was not inhibited by the tissue inhibitors of metalloproteinases (TIMPs). We also demonstrate that the activity of recombinant soluble ADAM9 (meltrin-γ, MDC9) lacks inhibition by the TIMPs, but can be inhibited by hydroxamate inhibitors. The lack of TIMP inhibition of ADAM8 and 9 contrasts with other membrane-associated metalloproteinases characterised to date in this respect (ADAM10, 12, 17, and the membrane-type metalloproteinases) which have been implicated in protein processing at the cell surface.
U2 - 10.1016/S0014-5793(02)03047-8
DO - 10.1016/S0014-5793(02)03047-8
M3 - Article
VL - 524
SP - 154
EP - 158
JO - FEBS Letters
JF - FEBS Letters
SN - 0014-5793
IS - 1-3
ER -