TY - JOUR
T1 - The fast response of volcano-seismic activity to intense precipitation: Triggering of primary volcanic activity by rainfall at Soufrière Hills Volcano, Montserrat
AU - Matthews, Adrian J.
AU - Barclay, Jenni
AU - Johnstone, Jade E.
PY - 2009
Y1 - 2009
N2 - One-minute resolution time series of rainfall and seismic data from the Soufriere Hills Volcano, Montserrat are analysed to explore the mechanism of external forcing of volcanic eruptions by rainfall over three years of activity. The real-time seismic amplitude (RSAM) shows a narrow, statistically significant, peak within 30 min after the start of intense rainfall events, and a much broader peak with a lag of 6?40 h. The classified seismic events indicate that the volcanic response to rainfall begins at the surface and gradually penetrates deeper into the dome, as there is an increase in the pseudo-magnitude of: surface rockfall events (including pyroclastic flows) with lags from the first 30 min to 40 h, long-period rockfalls (from shallow degassing) at lags of 4 and 14 h, and long-period and hybrid events (source depth approximately 1 km) with lags at 14 and 24 h after the start of rainfall events. There was no rainfall-related change in deeper, volcano-tectonic activity. There was no change in the frequency of any type of classified event, indicating that the rainfall acts to modulate existing, internal processes, rather than generating new events itself. These robust results are due to many (229) different rainfall events, and not just to a few, large magnitude cases. The rainfalltriggered volcanic activity examined here is consistent with a model of fast, shallow interactions with rainfall at the dome surface, after which, a deeper dome collapse follows.
AB - One-minute resolution time series of rainfall and seismic data from the Soufriere Hills Volcano, Montserrat are analysed to explore the mechanism of external forcing of volcanic eruptions by rainfall over three years of activity. The real-time seismic amplitude (RSAM) shows a narrow, statistically significant, peak within 30 min after the start of intense rainfall events, and a much broader peak with a lag of 6?40 h. The classified seismic events indicate that the volcanic response to rainfall begins at the surface and gradually penetrates deeper into the dome, as there is an increase in the pseudo-magnitude of: surface rockfall events (including pyroclastic flows) with lags from the first 30 min to 40 h, long-period rockfalls (from shallow degassing) at lags of 4 and 14 h, and long-period and hybrid events (source depth approximately 1 km) with lags at 14 and 24 h after the start of rainfall events. There was no rainfall-related change in deeper, volcano-tectonic activity. There was no change in the frequency of any type of classified event, indicating that the rainfall acts to modulate existing, internal processes, rather than generating new events itself. These robust results are due to many (229) different rainfall events, and not just to a few, large magnitude cases. The rainfalltriggered volcanic activity examined here is consistent with a model of fast, shallow interactions with rainfall at the dome surface, after which, a deeper dome collapse follows.
U2 - 10.1016/j.jvolgeores.2009.05.010
DO - 10.1016/j.jvolgeores.2009.05.010
M3 - Article
VL - 184
SP - 405
EP - 415
JO - Journal of Volcanology and Geothermal Research
JF - Journal of Volcanology and Geothermal Research
SN - 0377-0273
IS - 3-4
ER -