Abstract
Nigella degenii ssp. barbro and ssp. jenny differ from related taxa in being dimorphic for pollen color, with some plants having dark pollen and others light pollen. In this study we performed experimental crosses to determine whether the difference in pollen color is governed by few or many loci and whether the two subspecies utilize the same gene to control pollen color. Patterns of segregation in crosses between morphs show that dark pollen is dominant over light pollen and that a single major gene is responsible for most of the variation in pollen color. Consequently it should be relatively easy for pollen color dimorphisms to establish and spread in these subspecies. Aberrant segregation ratios were attributed to genetic factors that reduced the expression of the allele conferring dark pollen or processes that sorted between color morphs during seed development. Crosses between dark pollen plants from different subspecies showed signs of complementation in the F2 generation, but the frequency of the light morph was too low to support a model involving complementary action of recessive alleles at two separate loci. Based on this and other observations, we hypothesize that the pollen color difference is controlled by the same major locus in the two subspecies.
Original language | English |
---|---|
Pages (from-to) | 550-556 |
Number of pages | 7 |
Journal | Journal of Heredity |
Volume | 96 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2005 |