TY - JOUR
T1 - The human gut symbiont Ruminococcus gnavus shows specificity to blood group A antigen during mucin glycan foraging: Implication for niche colonisation in the gastrointestinal tract
AU - Wu, Haiyang
AU - Crost, Emmanuelle H.
AU - Owen, C. David
AU - Van Bakel, Wouter
AU - Martínez Gascueña, Ana
AU - Latousakis, Dimitrios
AU - Hicks, Thomas
AU - Walpole, Samuel
AU - Urbanowicz, Paulina A.
AU - Ndeh, Didier
AU - Monaco, Serena
AU - Sánchez Salom, Laura
AU - Griffiths, Ryan
AU - Reynolds, Raven S.
AU - Colvile, Anna
AU - Spencer, Daniel I. R.
AU - Walsh, Martin
AU - Angulo, Jesus
AU - Juge, Nathalie
PY - 2021/12/22
Y1 - 2021/12/22
N2 - AU The:human Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly gut symbiont Ruminococcus gnavus displays strain-specific : repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-β-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.
AB - AU The:human Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly gut symbiont Ruminococcus gnavus displays strain-specific : repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-β-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.
UR - http://www.scopus.com/inward/record.url?scp=85122329203&partnerID=8YFLogxK
U2 - 10.1371/journal.pbio.3001498
DO - 10.1371/journal.pbio.3001498
M3 - Article
VL - 19
JO - PLoS Biology
JF - PLoS Biology
SN - 1545-7885
IS - 12
M1 - e3001498
ER -