The impact of atmospheric storminess on the sensitivity of Southern Ocean circulation to wind stress changes

David R. Munday, Xiaoming Zhai

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
12 Downloads (Pure)


The influence of changing the mean wind stress felt by the ocean through alteration of the variability of the atmospheric wind, as opposed to the mean atmospheric wind, on Southern Ocean circulation is investigated using an idealised channel model. Strongly varying atmospheric wind is found to increase the (parameterised) near-surface viscous and diffusive mixing. Analysis of the kinetic energy budget indicates a change in the main energy dissipation mechanism. For constant wind stress, dissipation of the power input by surface wind work is always dominated by bottom kinetic energy dissipation. However, with time-varying atmospheric wind, near surface viscous dissipation of kinetic energy becomes increasingly important as mean wind stress increases. This increased vertical diffusivity leads to thicker mixed layers and higher sensitivity of the residual circulation to increasing wind stress, when compared to equivalent experiments with the same wind stress held constant in time. This may have implications for Southern Ocean circulation in different climate change scenarios should the variability of the atmospheric wind change rather than the mean atmospheric wind.
Original languageEnglish
Pages (from-to)14–26
JournalOcean Modelling
Early online date15 May 2017
Publication statusPublished - Jul 2017


  • Ocean modelling
  • Eddy-resolving
  • Eddy kinetic energy
  • Surface wind stress
  • Residual overturning
  • Near-surface mixing

Cite this