The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia

Ying Ying Toh, Sze Fook Lim, Roland von Glasow

Research output: Contribution to journalArticlepeer-review

84 Citations (Scopus)

Abstract

The surface ozone concentrations at the Tanah Rata regional Global Atmosphere Watch (GAW) station, Malaysia (4°28'N, 101°23'E, 1545 m above Mean Sea Level (MSL)) from June 2006 to August 2008 were analyzed in this study. Overall the ozone mixing ratios are very low; the seasonal variations show the highest mixing ratios during the Southwest monsoon (average 19.1 ppb) and lowest mixing ratios during the spring intermonsoon (average 14.2 ppb). The diurnal variation of ozone is characterised by an afternoon maximum and night time minimum. The meteorological conditions that favour the formation of high ozone levels at this site are low relative humidity, high temperature and minimum rainfall. The average ozone concentration is lower during precipitation days compared to non-precipitation days. The hourly averaged ozone concentrations show significant correlations with temperature and relative humidity during the Northeast monsoon and spring intermonsoon. The highest concentrations are observed when the wind is blowing from the west. We found an anticorrelation between the atmospheric pressure tide and ozone concentrations. The ozone mixing ratios do not exceed the recommended Malaysia Air Quality Guidelines for 1-h and 8-h averages. Five day backward trajectories on two high ozone episodes in 07 August 2006 (40.0 ppb) and 24 February 2008 (45.7 ppb) are computed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the origin of the pollutants and influence of regional transport. The high ozone episode during 07 August 2006 (burning season during southwest monsoon) is mainly attributed to regional transport from biomass burning in Sumatra, whereas favourable meteorological conditions (i.e. low relative humidity, high temperature and solar radiation, zero rainfall) and long range transport from Indo-China have elevated the ozone concentrations during 24 February 2008.
Original languageEnglish
Pages (from-to)435-446
Number of pages12
JournalAtmospheric Environment
Volume70
Early online date24 Jan 2013
DOIs
Publication statusPublished - May 2013

Keywords

  • Surfance ozone
  • Biomass burning
  • Meteorological conditions
  • Regional transport
  • Backward trajectory

Cite this