The mitochondrial sulfur dioxygenase ETHE1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis thaliana

Lena Krüssel, Johannes Junemann, Markus Wirtz, Hannah Birke, Jeremy D. Thornton, Luke W. Browning, Gernot Poschet, Rüdiger Hell, Janneke Balk, Hans-Peter Braun, Tatjana Hildebrandt

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)


The sulfur dioxygenase ETHE1 catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis thaliana. We investigated the biochemical and physiological function of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three T-DNA insertion lines with 50-99 % decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth condition and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism ETHE1 also affects the oxidation of branched-chain amino acids and lysine.
Original languageEnglish
Pages (from-to)92-104
Number of pages13
JournalPlant Physiology
Issue number1
Early online date1 Apr 2014
Publication statusPublished - May 2014

Cite this