Abstract
Phenotypic plasticity can be a key determinant of fitness. The degree to which the expression of plasticity is adaptive relies upon the accuracy with which information about the state of the environment is integrated. This step might be particularly beneficial when environments, e.g. the social and sexual context, change rapidly. Fluctuating temporal dynamics could increase the difficulty of determining the appropriate level of expression of a plastic response. In this review, we suggest that new insights into plastic responses to the social and sexual environment (social and reproductive plasticity) may be gained by examining the role of complex cues (those comprising multiple, distinct sensory components). Such cues can enable individuals to more accurately monitor their environment in order to respond adaptively to it across the whole life course. We briefly review the hypotheses for the evolution of complex cues and then adapt these ideas to the context of social and sexual plasticity. We propose that the ability to perceive complex cues can facilitate plasticity, increase the associated fitness benefits and decrease the risk of costly ‘mismatches’ between phenotype and environment by (i) increasing the robustness of information gained from highly variable environments, (ii) fine-tuning responses by using multiple strands of information and (iii) reducing time lags in adaptive responses. We conclude by outlining areas for future research that will help to determine the interplay between complex cues and plasticity.
Original language | English |
---|---|
Article number | 124 |
Journal | Behavioral Ecology and Sociobiology |
Volume | 72 |
Early online date | 7 Jul 2018 |
DOIs | |
Publication status | Published - Aug 2018 |
Keywords
- phenotypic plasticity
- sexual selection
- fitness
- reproductive success
- multimodal
- communication
Profiles
-
Tracey Chapman
- School of Biological Sciences - Professor of Evolutionary Genetics
- Centre for Ecology, Evolution and Conservation - Member
- Organisms and the Environment - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research