The shortest identities for max-plus automata with two states

Laure Daviaud, Marianne Johnson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Max-plus automata are quantitative extensions of automata designed to associate an integer with every non-empty word. A pair of distinct words is said to be an identity for a class of max-plus automata if each of the automata in the class computes the same value on the two words. We give the shortest identities holding for the class of max-plus automata with two states. For this, we exhibit an interesting list of necessary conditions for an identity to hold. Moreover, this result provides a counter-example of a conjecture of Izhakian, concerning the minimality of certain identities.

Original languageEnglish
Title of host publication42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017
EditorsKim G. Larsen, Jean-Francois Raskin, Hans L. Bodlaender
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770460
DOIs
Publication statusPublished - 1 Nov 2017
Externally publishedYes
Event42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017 - Aalborg, Denmark
Duration: 21 Aug 201725 Aug 2017

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume83
ISSN (Print)1868-8969

Conference

Conference42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017
Country/TerritoryDenmark
CityAalborg
Period21/08/1725/08/17

Keywords

  • Identities
  • Max-plus automata
  • Tropical matrices
  • Weighted automata

Cite this