TY - GEN
T1 - The Strahler number of a parity game
AU - Daviaud, Laure
AU - Jurdziński, Marcin
AU - Thejaswini, K. S.
N1 - Funding Information:
Funding This work has been supported by the EPSRC grant EP/P020992/1 (Solving Parity Games in Theory and Practice). It has started when the third author was supported by the Department of Computer Science at the University of Warwick as a visiting student from Chennai Mathematical Institute, India.
Publisher Copyright:
© Laure Daviaud, Marcin Jurdziński, and K. S. Thejaswini; licensed under Creative Commons License CC-BY 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
PY - 2020/6/1
Y1 - 2020/6/1
N2 - The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor. The Strahler number of a parity game is proposed to be defined as the smallest Strahler number of the tree of any of its attractor decompositions. It is proved that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices n and linear in (d/2k)k, where d is the number of priorities and k is the Strahler number. This complexity is quasi-polynomial because the Strahler number is at most logarithmic in the number of vertices. The proof is based on a new construction of small Strahler-universal trees. It is shown that the Strahler number of a parity game is a robust, and hence arguably natural, parameter: it coincides with its alternative version based on trees of progress measures and - remarkably - with the register number defined by Lehtinen (2018). It follows that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices and linear in (d/2k)k, where k is the register number. This significantly improves the running times and space achieved for parity games of bounded register number by Lehtinen (2018) and by Parys (2020). The running time of the algorithm based on small Strahler-universal trees yields a novel trade-off k · lg(d/k) = O(log n) between the two natural parameters that measure the structural complexity of a parity game, which allows solving parity games in polynomial time. This includes as special cases the asymptotic settings of those parameters covered by the results of Calude, Jain Khoussainov, Li, and Stephan (2017), of Jurdziński and Lazić (2017), and of Lehtinen (2018), and it significantly extends the range of such settings, for example to d = 2O( √lg n) and k = O( √lg n).
AB - The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor. The Strahler number of a parity game is proposed to be defined as the smallest Strahler number of the tree of any of its attractor decompositions. It is proved that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices n and linear in (d/2k)k, where d is the number of priorities and k is the Strahler number. This complexity is quasi-polynomial because the Strahler number is at most logarithmic in the number of vertices. The proof is based on a new construction of small Strahler-universal trees. It is shown that the Strahler number of a parity game is a robust, and hence arguably natural, parameter: it coincides with its alternative version based on trees of progress measures and - remarkably - with the register number defined by Lehtinen (2018). It follows that parity games can be solved in quasi-linear space and in time that is polynomial in the number of vertices and linear in (d/2k)k, where k is the register number. This significantly improves the running times and space achieved for parity games of bounded register number by Lehtinen (2018) and by Parys (2020). The running time of the algorithm based on small Strahler-universal trees yields a novel trade-off k · lg(d/k) = O(log n) between the two natural parameters that measure the structural complexity of a parity game, which allows solving parity games in polynomial time. This includes as special cases the asymptotic settings of those parameters covered by the results of Calude, Jain Khoussainov, Li, and Stephan (2017), of Jurdziński and Lazić (2017), and of Lehtinen (2018), and it significantly extends the range of such settings, for example to d = 2O( √lg n) and k = O( √lg n).
KW - Attractor decomposition
KW - Parity game
KW - Progress measure
KW - Strahler number
KW - Universal tree
UR - http://www.scopus.com/inward/record.url?scp=85086893252&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2020.123
DO - 10.4230/LIPIcs.ICALP.2020.123
M3 - Conference contribution
AN - SCOPUS:85086893252
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020
A2 - Czumaj, Artur
A2 - Dawar, Anuj
A2 - Merelli, Emanuela
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020
Y2 - 8 July 2020 through 11 July 2020
ER -