TY - JOUR
T1 - The toxicological profile of polychlorinated naphthalenes (PCNs)
AU - Fernandes, Alwyn R.
AU - Kilanowicz, Anna
AU - Stragierowicz, Joanna
AU - Klimczak, Michał
AU - Falandysz, Jerzy
N1 - Acknowledgements: We thank Drs. Richard Mural and Susan Maskery for commenting on the manuscript.
Funding Information: This work was supported by the Clinical Breast Care Project with funds from the US Department of Defense through Henry Jackson Foundation for the Advancement of Military Medicine, Rockville, MD. The opinions and assertions herein are those of the authors and in no way reflect the official position or opinions of the United States Army, the Department of Defense, or the government of the United States. Reviewing Editor: James Lyons-Weiler.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - The legacy of polychlorinated naphthalenes (PCNs) manufactured during the last century continues to persist in the environment, food and humans. Metrological advances have improved characterisation of these occurrences, enabling studies on the effects of exposure to focus on congener groups and individual PCNs. Liver and adipose tissue show the highest retention but significant levels of PCNs are also retained by the brain and nervous system. Molecular configuration appears to influence tissue disposition as well as retention, favouring the higher chlorinated (≥ four chlorines) PCNs while most lower chlorinated molecules readily undergo hydroxylation and excretion through the renal system. Exposure to PCNs reportedly provokes a wide spectrum of adverse effects that range from hepatotoxicity, neurotoxicity and immune response suppression along with endocrine disruption leading to reproductive disorders and embryotoxicity. A number of PCNs, particularly hexachloronaphthalene congeners, elicit AhR mediated responses that are similar to, and occur within similar potency ranges as most dioxin-like polychlorinated biphenyls (PCBs) and some chlorinated dibenzo-p-dioxins and furans (PCDD/Fs), suggesting a relationship based on molecular size and configuration between these contaminants. Most toxicological responses generally appear to be associated with higher chlorinated PCNs. The most profound effects such as serious and sometimes fatal liver disease, chloracne, and wasting syndrome resulted either from earlier episodes of occupational exposure in humans or from acute experimental dosing of animals at levels that reflected these exposures. However, since the restriction of manufacture and controls on inadvertent production (during combustion processes), the principal route of human and animal exposure is likely to be dietary intake. Therefore, further investigations should include the effects of chronic lower level intake of higher chlorinated PCN congeners that persist in the human diet and subsequently in human and animal tissues. PCNs in the diet should be evaluated cumulatively with other similarly occurring dioxin-like contaminants.
AB - The legacy of polychlorinated naphthalenes (PCNs) manufactured during the last century continues to persist in the environment, food and humans. Metrological advances have improved characterisation of these occurrences, enabling studies on the effects of exposure to focus on congener groups and individual PCNs. Liver and adipose tissue show the highest retention but significant levels of PCNs are also retained by the brain and nervous system. Molecular configuration appears to influence tissue disposition as well as retention, favouring the higher chlorinated (≥ four chlorines) PCNs while most lower chlorinated molecules readily undergo hydroxylation and excretion through the renal system. Exposure to PCNs reportedly provokes a wide spectrum of adverse effects that range from hepatotoxicity, neurotoxicity and immune response suppression along with endocrine disruption leading to reproductive disorders and embryotoxicity. A number of PCNs, particularly hexachloronaphthalene congeners, elicit AhR mediated responses that are similar to, and occur within similar potency ranges as most dioxin-like polychlorinated biphenyls (PCBs) and some chlorinated dibenzo-p-dioxins and furans (PCDD/Fs), suggesting a relationship based on molecular size and configuration between these contaminants. Most toxicological responses generally appear to be associated with higher chlorinated PCNs. The most profound effects such as serious and sometimes fatal liver disease, chloracne, and wasting syndrome resulted either from earlier episodes of occupational exposure in humans or from acute experimental dosing of animals at levels that reflected these exposures. However, since the restriction of manufacture and controls on inadvertent production (during combustion processes), the principal route of human and animal exposure is likely to be dietary intake. Therefore, further investigations should include the effects of chronic lower level intake of higher chlorinated PCN congeners that persist in the human diet and subsequently in human and animal tissues. PCNs in the diet should be evaluated cumulatively with other similarly occurring dioxin-like contaminants.
KW - AhR mediated toxicity
KW - Endocrine-disruption
KW - Human exposure
KW - Neurotoxicity
KW - Relative potency
KW - Reproductive toxicity
UR - http://www.scopus.com/inward/record.url?scp=85130363573&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2022.155764
DO - 10.1016/j.scitotenv.2022.155764
M3 - Article
VL - 837
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
M1 - 155764
ER -