Projects per year
Abstract
Ferritins are iron storage proteins that overcome problems of toxicity and poor bioavailability of iron by catalysing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe3+ site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe3+ into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe2+ oxidation in the cavity. Here we demonstrate that EcBFR mineralization depends on three near-diiron site aromatic residues, Tyr25, Tyr58 and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe2+ oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2.
Original language | English |
---|---|
Pages (from-to) | 14976–14980 |
Number of pages | 5 |
Journal | Angewandte Chemie-International Edition |
Volume | 127 |
Issue number | 49 |
Early online date | 16 Oct 2015 |
DOIs | |
Publication status | Published - 1 Dec 2015 |
Keywords
- Bioanorganische Chemie
- Eisen
- Ferritin
- Mineralisierung
- Tyrosylradikale
Profiles
-
Andrew Hemmings
- School of Biological Sciences - Professor of Structural Biology
- School of Chemistry, Pharmacy and Pharmacology - Professor
- Centre for Molecular and Structural Biochemistry - Member
- Chemistry of Life Processes - Member
- Molecular Microbiology - Member
- Plant Sciences - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research
-
Nick Le Brun
- School of Chemistry, Pharmacy and Pharmacology - Professor of Biological Chemistry
- Centre for Molecular and Structural Biochemistry - Director
- Chemistry of Life Processes - Member
Person: Research Group Member, Academic, Teaching & Research
Projects
- 1 Finished
-
Nature's solution to the iron problem: Mechanisms of iron management in ferritins
Le Brun, N., Moore, G. & Cull, N.
Biotechnology and Biological Sciences Research Council
1/06/12 → 31/05/15
Project: Research