Three-dimensional theory of water impact. Part 1. Inverse Wagner problem

Y.-M. Scolan, A. A. Korobkin

Research output: Contribution to journalArticlepeer-review

139 Citations (Scopus)

Abstract

The three-dimensional problem of blunt-body impact onto the free surface of an ideal incompressible liquid is considered within the Wagner theory. The theory is formally valid during an initial stage of the impact. The problem has been extensively studied in both two-dimensional and axisymmetric cases. However, there are no exact truly three-dimensional solutions of the problem even within the Wagner theory. At present, three-dimensional effects in impact problems are mainly handled approximately by using a sequence of two-dimensional solutions and/or aspect-ratio correction factor. In this paper we present exact analytical rather than approximate solutions to the three-dimensional Wagner problem. The solutions are obtained by the inverse method. In this method the body velocity and the projection on the horizontal plane of the contact line between the liquid free surface and the surface of the entering body are assumed to be given at any time instant. The shape of the impacting body is determined from the Wagner condition. It is proved that an elliptic paraboloid entering calm water at a constant velocity has an elliptic contact line with the free surface. Most of the results are presented for elliptic contact lines, for which analytical solutions of the inverse Wagner problem are available. The results obtained can be helpful in testing other numerical approaches and studying the influence of three-dimensional effects on the liquid flow and the hydrodynamic loads.
Original languageEnglish
Pages (from-to)293-326
Number of pages34
JournalJournal of Fluid Mechanics
Volume440
DOIs
Publication statusPublished - 2001

Cite this