Thrive or survive: Prokaryotic life in hypersaline soils

Blanca Vera‐Gargallo, Marcela Hernández, Marc G. Dumont, Antonio Ventosa

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Soil services are central to life on the planet, with microorganisms as their main drivers. Thus, the evaluation of soil quality requires an understanding of the principles and factors governing microbial dynamics within it. High salt content is a constraint for life affecting more than 900 million hectares of land, a number predicted to rise at an alarming rate due to changing climate. Nevertheless, little is known about how microbial life unfolds in these habitats. In this study, DNA stable-isotope probing (DNA-SIP) with 18O-water was used to determine for the first time the taxa able to grow in hypersaline soil samples (EC e = 97.02 dS/m). We further evaluated the role of light on prokaryotes growth in this habitat. Results: We detected growth of both archaea and bacteria, with taxon-specific growth patterns providing insights into the drivers of success in saline soils. Phylotypes related to extreme halophiles, including haloarchaea and Salinibacter, which share an energetically efficient mechanism for salt adaptation (salt-in strategy), dominated the active community. Bacteria related to moderately halophilic and halotolerant taxa, such as Staphylococcus, Aliifodinibius, Bradymonadales or Chitinophagales also grew during the incubations, but they incorporated less heavy isotope. Light did not stimulate prokaryotic photosynthesis but instead restricted the growth of most bacteria and reduced the diversity of archaea that grew. Conclusions: The results of this study suggest that life in saline soils is energetically expensive and that soil heterogeneity and traits such as exopolysaccharide production or predation may support growth in hypersaline soils. The contribution of phototrophy to supporting the heterotrophic community in saline soils remains unclear. This study paves the way toward a more comprehensive understanding of the functioning of these environments, which is fundamental to their management. Furthermore, it illustrates the potential of further research in saline soils to deepen our understanding of the effect of salinity on microbial communities.

Original languageEnglish
Article number17
JournalEnvironmental Microbiome
Volume18
DOIs
Publication statusPublished - 13 Mar 2023

Keywords

  • Amplicon sequencing
  • Hypersaline environments
  • Prokaryotic communities
  • Saline soil
  • Stable isotope probing

Cite this