Transient behavior and reaction mechanism of CO catalytic ignition over a CuO–CeO2 mixed oxide

Running Kang, Pandong Ma, Junyao He, Huixin Li, Feng Bin, Xiaolin Wei, Baojuan Dou, Kwun Nam Hui, Kwan San Hui

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)
15 Downloads (Pure)

Abstract

As a key heterogeneous process, the catalytic oxidation of CO is essential not only for practical applications such as automotive exhaust purification and fuel cells but also as a model reaction to study the reaction mechanism and structure-reactivity correlation of catalysts. In this study, the variation in activity-controlling factors during CO catalytic ignition over a CuO-CeO 2 catalyst was investigated. The activity for CO combustion follows the decreasing order of CuO-CeO 2 > CuO > CeO 2. Except for inactive CeO 2, increasing temperature induces CO ignition to achieve self-sustained combustion over CuO and CuO-CeO 2. However, CuO provides enough copper sites to adsorb CO, and abundant active lattice oxygen, thus obtaining a higher hot zone temperature (208.3 °C) than that of CuO-CeO 2 (197.3 °C). Catalytic ignition triggers a kinetic transition from the low-rate steady-state regime to a high-rate steady-state regime. During the induction process, Raman, X-ray photoelectron spectroscopy, CO temperature-programmed desorption and IR spectroscopy results indicated that CO is preferentially adsorbed on oxygen vacancies (Cu +-[Ov]-Ce 3+) to yield Cu +-[C≡O]-Ce 3+ complexes. Because of the self-poisoning of CO, the adsorbed CO and traces of adsorbed oxygen react at a relative rate, which is entirely governed by the kinetics on the CO-covered surface and the heat transport until the pre-ignition regime. The Cu +-[C≡O]-Ce 3+ complex is a major contributor to CO ignition. The step-response runs and kinetic models showed that after ignition, a kinetic phase transition occurs from a CO-covered surface to an active lattice oxygen-covered surface. During CO self-sustained combustion, the rapid gas diffusivity and mass transfer is beneficial for handling the low coverage of CO. The active lattice oxygen of CuO takes part in CO oxidation.

Original languageEnglish
Pages (from-to)6493-6501
Number of pages9
JournalProceedings of the Combustion Institute
Volume38
Issue number4
Early online date25 Aug 2020
DOIs
Publication statusPublished - 2021

Keywords

  • Carbon monoxide
  • Catalytic ignition
  • Copper-cerium oxide
  • Reaction mechanism
  • Transient behavior

Cite this