TY - JOUR
T1 - Trends in Mediterranean gridded temperature extremes and large-scale circulation influences
AU - Efthymiadis, D.
AU - Goodess, C. M.
AU - Jones, P. D.
PY - 2011/8/12
Y1 - 2011/8/12
N2 - Two recently-available daily gridded datasets are used to investigate trends in Mediterranean temperature extremes since the mid-20th century. The underlying trends are found to be generally consistent with global trends of temperature and their extremes: cold extremes decrease and warm/hot extremes increase. This consistency is better manifested in the western part of the Mediterranean where changes are most pronounced since the mid-1970s. In the eastern part, a cooling is observed, with a near reversal in the last two decades. This inter-basin discrepancy is clearer in winter, while in summer changes are more uniform and the west-east difference is restricted to the rate of increase of warm/hot extremes, which is higher in central and eastern parts of the Mediterranean over recent decades. Linear regression and correlation analysis reveals some influence of major large-scale atmospheric circulation patterns on the occurrence of these extremes – both in terms of trend and interannual variability. These relationships are not, however, able to account for the most striking features of the observations – in particular the intensification of the increasing trend in warm/hot extremes, which is most evident over the last 15–20 yr in the Central and Eastern Mediterranean.
AB - Two recently-available daily gridded datasets are used to investigate trends in Mediterranean temperature extremes since the mid-20th century. The underlying trends are found to be generally consistent with global trends of temperature and their extremes: cold extremes decrease and warm/hot extremes increase. This consistency is better manifested in the western part of the Mediterranean where changes are most pronounced since the mid-1970s. In the eastern part, a cooling is observed, with a near reversal in the last two decades. This inter-basin discrepancy is clearer in winter, while in summer changes are more uniform and the west-east difference is restricted to the rate of increase of warm/hot extremes, which is higher in central and eastern parts of the Mediterranean over recent decades. Linear regression and correlation analysis reveals some influence of major large-scale atmospheric circulation patterns on the occurrence of these extremes – both in terms of trend and interannual variability. These relationships are not, however, able to account for the most striking features of the observations – in particular the intensification of the increasing trend in warm/hot extremes, which is most evident over the last 15–20 yr in the Central and Eastern Mediterranean.
U2 - 10.5194/nhess-11-2199-2011
DO - 10.5194/nhess-11-2199-2011
M3 - Article
VL - 11
SP - 2199
EP - 2214
JO - Natural Hazards and Earth System Sciences
JF - Natural Hazards and Earth System Sciences
SN - 1561-8633
IS - 8
ER -