Trihedral Soergel bimodules

Marco MacKaay, Volodymyr Mazorchuk, Vanessa Miemietz, Daniel Tubbenhauer

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
14 Downloads (Pure)

Abstract

The quantum Satake correspondence relates dihedral Soergel bimodules to the semisimple quotient of the quantum sl2 representation category. It also establishes a precise relation between the simple transitive 2-representations of both monoidal categories, which are indexed by bicolored ADE Dynkin diagrams. Using the quantum Satake correspondence between affine A 2 Soergel bimodules and the semisimple quotient of the quantum sl3 representation category, we introduce trihedral Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel bimodules. These have their own Kazhdan-Lusztig combinatorics, simple transitive 2- representations corresponding to tricolored generalized ADE Dynkin diagrams.

Original languageEnglish
Pages (from-to)219-300
Number of pages82
JournalFundamenta Mathematicae
Volume248
Issue number3
Early online date19 Sep 2019
DOIs
Publication statusPublished - Jan 2020

Keywords

  • 2-representation theory
  • Hecke algebras
  • Quantum groups and their fusion categories
  • Soergel bimodules
  • Zigzag algebras

Cite this