Twenty-first-century projections of shoreline change along inlet-interrupted coastlines

Janaka Bamunawala, Roshanka Ranasinghe, Ali Dastgheib, Robert J. Nicholls, A. Brad Murray, Patrick L. Barnard, T. A. J. G. Sirisena, Trang Minh Duong, Suzanne J. M. H. Hulscher, Ad van der Spek

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)
17 Downloads (Pure)

Abstract

Sandy coastlines adjacent to tidal inlets are highly dynamic and widespread landforms, where large changes are expected due to climatic and anthropogenic influences. To adequately assess these important changes, both oceanic (e.g., sea-level rise) and terrestrial (e.g., fluvial sediment supply) processes that govern the local sediment budget must be considered. Here, we present novel projections of shoreline change adjacent to 41 tidal inlets around the world, using a probabilistic, reduced complexity, system-based model that considers catchment-estuary-coastal systems in a holistic way. Under the RCP 8.5 scenario, retreat dominates (90% of cases) over the twenty-first century, with projections exceeding 100 m of retreat in two-thirds of cases. However, the remaining systems are projected to accrete under the same scenario, reflecting fluvial influence. This diverse range of response compared to earlier methods implies that erosion hazards at inlet-interrupted coasts have been inadequately characterised to date. The methods used here need to be applied widely to support evidence-based coastal adaptation.
Original languageEnglish
Article number14038
JournalScientific Reports
Volume11
DOIs
Publication statusPublished - 7 Jul 2021

Cite this