Two-stage evolution of mammalian adipose tissue thermogenesis

Susanne Keipert, Michael J. Gaudry, Maria Kutschke, Michaela Keuper, Margeoux A. S. Dela Rosa, Yiming Cheng, José M. Monroy Kuhn, Rutger Laterveer, Camila A. Cotrim, Peter Giere, Fabiana Perocchi, Regina Feederle, Paul G. Crichton, Dominik Lutter, Martin Jastroch

Research output: Contribution to journalArticlepeer-review

3 Downloads (Pure)

Abstract

Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials.
Original languageEnglish
Pages (from-to)1111-1117
Number of pages7
JournalScience
Volume384
Issue number6700
Early online date6 Jun 2024
DOIs
Publication statusPublished - 7 Jun 2024

Cite this