Abstract
Background: Polyphenols are phytochemicals that possess antioxidant and anti-inflammatory properties and improve glucose metabolism in animal experiments, although data from prospective epidemiologic studies examining polyphenol intakes in relation to type 2 diabetes (T2D) risk are inconsistent.
Objectives: We examined urinary excretion of select flavonoid and phenolic acid metabolites, as biomarkers of intake, in relation to T2D risk.
Methods: Eight polyphenol metabolites (naringenin, hesperetin, quercetin, isorhamnetin, catechin, epicatechin, caffeic acid, and ferulic acid) were quantified in spot urine samples by liquid chromatography/mass spectrometry among 1111 T2D case-control pairs selected from the Nurses' Health Study (NHS) and NHSII.
Results: Higher urinary excretion of hesperetin was associated with a lower T2D risk after multivariate adjustment: the OR comparing top vs. bottom quartiles was 0.68 (95% CI: 0.49, 0.96), although a linear trend was lacking (P = 0.30). The other measured polyphenols were not significantly associated with T2D risk after multivariate adjustment. However, during the early follow-up period [≤4.6 y (median) since urine sample collection], markers of flavanone intakes (naringenin and hesperetin) and flavonol intakes (quercetin and isorhamnetin) were significantly associated with a lower T2D risk. The ORs (95% CIs) comparing extreme quartiles were 0.61 (0.39, 0.98; P-trend: 0.03) for total flavanones and 0.55 (0.33, 0.92; P-trend: 0.04) for total flavonols (P-interaction with follow-up length: ≤0.04). An inverse association was also observed for caffeic acid during early follow-up only: the OR was 0.52 (95% CI: 0.32, 0.84; P-trend: 0.03). None of these markers was associated with T2D risk during later follow-up. Metabolites of flavan-3-ols and ferulic acid were not associated with T2D risk in either period.
Conclusions:These results suggest that specific flavonoid subclasses, including flavanones and flavonols, as well as caffeic acid, are associated with a lower T2D risk in relatively short-term follow-up but not during longer follow-up. Substantial within-person variability of the metabolites in single spot urine samples may limit the ability to capture associations with long-term disease risk.
Objectives: We examined urinary excretion of select flavonoid and phenolic acid metabolites, as biomarkers of intake, in relation to T2D risk.
Methods: Eight polyphenol metabolites (naringenin, hesperetin, quercetin, isorhamnetin, catechin, epicatechin, caffeic acid, and ferulic acid) were quantified in spot urine samples by liquid chromatography/mass spectrometry among 1111 T2D case-control pairs selected from the Nurses' Health Study (NHS) and NHSII.
Results: Higher urinary excretion of hesperetin was associated with a lower T2D risk after multivariate adjustment: the OR comparing top vs. bottom quartiles was 0.68 (95% CI: 0.49, 0.96), although a linear trend was lacking (P = 0.30). The other measured polyphenols were not significantly associated with T2D risk after multivariate adjustment. However, during the early follow-up period [≤4.6 y (median) since urine sample collection], markers of flavanone intakes (naringenin and hesperetin) and flavonol intakes (quercetin and isorhamnetin) were significantly associated with a lower T2D risk. The ORs (95% CIs) comparing extreme quartiles were 0.61 (0.39, 0.98; P-trend: 0.03) for total flavanones and 0.55 (0.33, 0.92; P-trend: 0.04) for total flavonols (P-interaction with follow-up length: ≤0.04). An inverse association was also observed for caffeic acid during early follow-up only: the OR was 0.52 (95% CI: 0.32, 0.84; P-trend: 0.03). None of these markers was associated with T2D risk during later follow-up. Metabolites of flavan-3-ols and ferulic acid were not associated with T2D risk in either period.
Conclusions:These results suggest that specific flavonoid subclasses, including flavanones and flavonols, as well as caffeic acid, are associated with a lower T2D risk in relatively short-term follow-up but not during longer follow-up. Substantial within-person variability of the metabolites in single spot urine samples may limit the ability to capture associations with long-term disease risk.
Original language | English |
---|---|
Pages (from-to) | 1280-1288 |
Number of pages | 9 |
Journal | Journal of Nutrition |
Volume | 145 |
Issue number | 6 |
Early online date | 22 Apr 2015 |
DOIs | |
Publication status | Published - 1 Jun 2015 |
Keywords
- diabetes
- nutrition
- polyphenol
- urinary biomarker
- women