TY - JOUR
T1 - Using GENIE to study a tipping point in the climate system
AU - Lenton, Timothy M.
AU - Myerscough, Richard J.
AU - Marsh, Robert
AU - Livina, Valerie N.
AU - Price, Andrew R.
AU - Cox, Simon J.
PY - 2009
Y1 - 2009
N2 - We have used the Grid ENabled Integrated Earth system modelling framework to study the archetypal example of a tipping point in the climate system; a threshold for the collapse of the Atlantic thermohaline circulation (THC). eScience has been invaluable in this work and we explain how we have made it work for us. Two stable states of the THC have been found to coexist, under the same boundary conditions, in a hierarchy of models. The climate forcing required to collapse the THC and the reversibility or irreversibility of such a collapse depends on uncertain model parameters. Automated methods have been used to assimilate observational data to constrain the pertinent parameters. Anthropogenic climate forcing leads to a robust weakening of the THC and increases the probability of crossing a THC tipping point, but some ensemble members collapse readily, whereas others are extremely resistant. Hence, we test general methods that have been developed to directly diagnose, from time-series data, the proximity of a 'tipping element', such as the THC to a bifurcation point. In a three-dimensional ocean-atmosphere model exhibiting THC hysteresis, despite high variability in the THC driven by the dynamical atmosphere, some early warning of an approaching tipping point appears possible.
AB - We have used the Grid ENabled Integrated Earth system modelling framework to study the archetypal example of a tipping point in the climate system; a threshold for the collapse of the Atlantic thermohaline circulation (THC). eScience has been invaluable in this work and we explain how we have made it work for us. Two stable states of the THC have been found to coexist, under the same boundary conditions, in a hierarchy of models. The climate forcing required to collapse the THC and the reversibility or irreversibility of such a collapse depends on uncertain model parameters. Automated methods have been used to assimilate observational data to constrain the pertinent parameters. Anthropogenic climate forcing leads to a robust weakening of the THC and increases the probability of crossing a THC tipping point, but some ensemble members collapse readily, whereas others are extremely resistant. Hence, we test general methods that have been developed to directly diagnose, from time-series data, the proximity of a 'tipping element', such as the THC to a bifurcation point. In a three-dimensional ocean-atmosphere model exhibiting THC hysteresis, despite high variability in the THC driven by the dynamical atmosphere, some early warning of an approaching tipping point appears possible.
U2 - 10.1098/rsta.2008.0171
DO - 10.1098/rsta.2008.0171
M3 - Article
SN - 1471-2962
VL - 367
SP - 871
EP - 884
JO - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
IS - 1890
ER -